Renault's j-map for Fell bundle C⁎-algebras
نویسندگان
چکیده
If p:B→G is a Fell bundle over an étale groupoid, then we show that there norm reducing injective linear map j:Cr⁎(G;B)→Γ0(G;B) generalizing the well known j:Cr⁎(G)→C0(G) in case of groupoid.
منابع مشابه
A Classic Morita Equivalence Result for Fell Bundle C∗-algebras
We show how to extend a classic Morita Equivalence Result of Green’s to the C∗-algebras of Fell bundles over transitive groupoids. Specifically, we show that if p : B → G is a saturated Fell bundle over a transitive groupoid G with stability group H = G(u) at u ∈ G(0), then C∗(G,B) is Morita equivalent to C∗(H,C ), where C = B|H . As an application, we show that if p : B → G is a Fell bundle ov...
متن کاملAn equivalence theorem for reduced Fell bundle C∗-algebras
We show that if E is an equivalence of upper semicontinuous Fell bundles B and C over groupoids, then there is a linking bundle L(E ) over the linking groupoid L such that the full cross-sectional algebra of L(E ) contains those of B and C as complementary full corners, and likewise for reduced cross-sectional algebras. We show how our results generalise to groupoid crossed-products the fact, p...
متن کاملIDEAL J *-ALGEBRAS
A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...
متن کاملLocal tracial C*-algebras
Let $Omega$ be a class of unital $C^*$-algebras. We introduce the notion of a local tracial $Omega$-algebra. Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra. Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$ which has a certain non-simple tracial Rokhlin property. Then the crossed product algebra $C^*(G,A,alpha)$ is a unital local traci...
متن کاملAlgebras for the Partial Map Classifier Monad
a ≤ b iff a is the supremum of the subset {a} ∩ {b}. On any elementary topos E , one has the functor which to an object A associates the object TA = Ã which classifies partial maps into A (cf e.g. [J] 1.2). This functor T carries a monad structure T= (T, η, μ) ; it is a submonad of the power ”set” monad P= (P, η, μ), as described in, say, [AL],[Mi], or [J] 5.3. We shall analyze the category of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2022
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2022.126530